Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery
نویسندگان
چکیده
From previous studies, it has been found that curcumin exhibits an anti-inflammatory activity and is being used for the treatment of skin disorders; however, it is hydrophobic and has weak penetrating ability, resulting in poor drug transport through the stratum corneum. The aim of this study was to develop liquid crystalline systems for topical administration of curcumin for the treatment of inflammation. These liquid crystalline systems were developed from oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, and water as the surfactant, oil phase, and aqueous phase, respectively. These systems were characterized, and polarized light microscopy showed anisotropy with lamellar mesophases (Formulation 1) and hexagonal mesophases (Formulations 2 and 3), which were confirmed by the peak ratio measured using small-angle X-ray scattering. In addition, rheological tests revealed that the formulations exhibited gel-like behavior (G'>G″), as evidenced by the increased G' values that indicate structured systems. Texture profile analysis showed that hexagonal mesophases have high values of hardness, adhesiveness, and compressibility, which indicate structured systems. In vitro studies on bioadhesion revealed that the hexagonal mesophases increased the bioadhesiveness of the systems to the skin of the pig ear. An in vivo inflammation experiment showed that the curcumin-loaded hexagonal mesophase exhibited an anti-inflammatory activity as compared to the positive control (dexamethasone). The results suggest that this system has a potential to be used as a bioadhesive vehicle for the topical administration of curcumin. Therefore, it is possible to conclude that these systems can be used for the optimization of drug delivery systems to the skin.
منابع مشابه
Optimization, preparation and characterization of rutin-quercetin dual drug loaded keratin nanoparticles for biological applications
Objective(s): Response surface methodology (RSM) by central composite design (CCD) was applied to statistically optimize the preparation of Rutin-Quercetin (Ru-Qr) dual drug loaded human hair keratin nanoparticles as well as evaluate the characteristics. Materials and Methods: The effects of three independent parameters, namely, temperature (X1:10-40 C), surfactant (X2: SDS (1), SLS (2), Tween-...
متن کاملDesign and Evaluation of Hydrogel-Thickened Microemulsion for Topical Delivery of Minoxidil
The available minoxidil formulations for topical application suffer with major drawback having less contact time with the scalp which requires repeated application. Hence, the present study was aimed to investigate the effect of microemulsions and microemulsion based hydrogel systems (MEHs) for increased percutaneous penetration of minoxidil. Minoxidil microemulsions were developed by following...
متن کاملBrinzolamide-Loaded Nanoemulsions: In vitro Release Evaluation
The aim of this investigation was to design and develop nanoemulsions (NEs) as novel ophthalmic delivery systems for brinzolamide (BZD). Phase behavior of quaternary systems composed of triacetin and CapryolTM 90 (selected oils, screened through the solubility studies), various surfactants (namely, Cremophor RH 40, Brij 35, Labrasol and tyloxapol), Transcutol P (as co-surfactant) an...
متن کاملDesign and Construction of Ph-Sensitive Drug Delivery System Based on Metal-Organic Framework (MOF) Nanoparticles for Cancer Treatment by Drug Delivery System Containing Curcumin
Introduction: Much research has been carried out to improve drug delivery and targeted drug delivery to the body in order to minimize side effects, provide controlled delivery of the drug to the desired location and to achieve optimal therapeutic effects. Zeolitic imidazolate-8 (ZIF-8) is a subset of MOFs that are biocompatible, stable in the aquatic environment and have adjustable porosity. In...
متن کاملPreparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres
Microspheres formulated from poly (D,L-lactic-co-glycolide) (PLGA), a biodegradable polymer, have been extensively evaluated as a drug delivery system. In this study, the preparation, characterization and drug release properties of the PLGA microspheres were evaluated. Simvastatin (SIM)-loaded PLGA microspheres were prepared by oil-in-water emulsion/solvent evaporation method. The microspheres ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016